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Anomalous diffusion of charged particles in a lattice Lorentz gas in a transverse magnetic field

Czesław Oleksy
Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Pl. Maksa Borna 9, 50-204 Wrocław, Poland

~Received 9 September 1998!

We study diffusion in the Lorentz gas of noninteracting charged particles on a triangular lattice in a
transverse magnetic field. The percolation threshold appears at the scatterers concentrationc050.2155. The
diffusion atc0 is anomalous with the same exponentdw52.874 as the one found for the universality class of
the standard two-dimensional lattice percolation. The presence of logarithmic corrections to thet22 algebraic
tail of the velocity autocorrelation function is demonstrated in a special case for concentration of scatterers
close to 1, by making use of the moment propagation technique. The results of our computer simulations show
that the diffusion coefficient has a maximum abovec0 , and the velocity autocorrelation function changes the
sign of its amplitude, from negative to positive, at intermediate scatterers concentration. We employ the
Boltzmann approximation and calculate the diffusion coefficient and the velocity autocorrelation function.
@S1063-651X~99!04403-7#

PACS number~s!: 05.40.2a, 64.60.Ak 66.10.Cb
do
os
le
m
tr
d
ns
ay

i
ra
c

ca

en
o

te
he
in

he
th
en
th
le
an
te
sh
in

y

-
a
ity
m
e

tic

s
ity
on

n
as
ent
kel

ge-
of

ntz
dif-
we
ion
in
c-

are
ion
ion
e-

a
rs.
tice
s.

rec-

the
etic
s

rete
a-
I. INTRODUCTION

Magnetotransport experiments in two-dimensional anti
arrays@1–5# revealed a characteristic magnetoresistivity
cillation at low magnetic fields. In such systems antidot ho
form a superlattice with a period of a few hundred nano
eters in a two-dimensional electron gas. Hence, the elec
motion in antidot arrays can be described using classical
namics, which is confirmed by numerical calculatio
@2,6,7#. Experiments performed on disordered antidot arr
@8–10# showed that the peaks in magnetoresistivity vanish
the presence of a short range disorder, i.e., antidots are
domly distorted from their superlattice positions. This effe
was confirmed by a computer simulation of the classi
model @11#.

Bobylev et al. @12# discussed the problems arising wh
one attempts to employ the kinetic theory to investigate tw
dimensional magnetotransport in a system with comple
disordered stationary scatterers, i.e., in Lorentz gas. T
model consists of noninteracting charged particles mov

under the influence of the transverse magnetic fieldBẑ in the
(x,y) plane with randomly distributed hard disks playing t
role of stationary scatterers. It has been shown that in
model the Boltzmann equation is not valid even at low d
sities of scatterers. In the absence of an electric field
continuum percolation problem arises. This means that e
trons moving on cyclotron orbits with a radius smaller th
the critical radius are trapped in the finite clusters of scat
ers. Thus there is no diffusion below the percolation thre
old @12#. An unexpected result was obtained for a small
plane electric field and perpendicular magnetic field@13#.
The electron drifting in the empty space can be trapped b
single scatterer with a short range repulsive interaction.

It is very difficult to obtain highly accurate results in com
puter simulations performed in the continuum phase sp
especially if one examines the long-time tails of the veloc
autocorrelation function, anomalous diffusion in continuu
percolation, etc. In recent years, lattice-gas models have b
applied to atomic fluids for testing concepts of the kine
PRE 591063-651X/99/59~4!/3864~6!/$15.00
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theory @14–17#. The important result of these investigation
was discovering the algebraic long-time tails of the veloc
autocorrelation function of a tagged particle. This functi
decays with the exponentd/2 for the fluid andd/211 for the
Lorentz gas, whered is a space dimensionality. Investigatio
of the long-time correlations by a computer simulation w
possible due to the application of the very accurate mom
propagation method proposed by van der Hoef and Fren
@16#. This technique was also applied to calculate the al
braic decay of the velocity autocorrelation in the problem
random walk on percolation clusters@18#.

In this paper we propose a lattice version of the Lore
gas in the transverse magnetic field and use it to study
fusion at and above the percolation threshold. In Sec. II
define a discrete model. The calculation of the percolat
threshold is presented in Sec. III. The important quantity
the transport problem is the velocity autocorrelation fun
tion, whose long-time tails and amplitude sign change
studied in Sec. IV by making use of the moment propagat
technique. In Sec. V we apply the Boltzmann approximat
to calculate the diffusion coefficient and the role of corr
lated collisions is discussed.

II. THE DISCRETE MODEL

We consider the Lorentz gas on a triangular lattice with
fraction of sitesc occupied randomly by stationary scattere
The noninteracting charged particles travel over one lat
constant per unit time step in the direction of their velocitie
The particles have the same speed and their velocity di
tions are restricted to the following lattice vectors:

en5XcosS 2pn

6 D ,2sinS 2pn

6 D C, n50,1, . . . ,5. ~1!

It is convenient to set the speed of particles as well as
lattice constant both equal to 1. The presence of the magn
field Bẑ perpendicular to the particle velocities force
charged particles to move along closed orbits. In our disc
model the cyclotron orbit is formed by vertices of the hex
3864 ©1999 The American Physical Society
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PRE 59 3865ANOMALOUS DIFFUSION OF CHARGED PARTICLES IN . . .
gon whose side is equal to the lattice constant. Hence
magnetic field rotates particles by 2p/6 clockwise in each
unit time step. When a particle enters a site occupied b
scatterer, its velocity direction changes according to stoch
tic rules. Here we assume isotropic scattering rules, i.e., p

collisional velocity directions have equal probabilities (1
6 ). It

is worth noting that the scattered particle changes its cy
tron orbit ~see Fig. 1!. We assume that the cyclotron orbit o
a particle should be uniquely determined by its position a
velocity. The other possible orbit consistent with this a
sumption is formed by vertices of a triangle with the si
equal to the lattice constant for which the rotation angle
2p/3. The latter case will not be discussed in this pap
Thus, the concentration of scatterers becomes a parame
this model and the magnetic field is considered to be c
stant.

Since our model belongs to the class of probabilistic c
lular automata, it is well suited for a computer simulation.
is convenient to define the distribution functio
P(n,r ,t)—the probability that a particle being at timet at a
site r has a velocity directed alongen . The evolution of
P(n,r ,t) can be written in two steps.

~1! Rotation, P(n11,r ,t11)5P(n,r2en ,t), at a siter
without a scatterer.

~2! Scattering, P(n,r ,t11)5 1
6 ( l 50

5 P( l ,r2el ,t), at a site
r occupied by a scatterer.

Knowing the initial value of the distribution function an
the positions of scatterers one can perform accurate comp
simulations.

III. THE PERCOLATION THRESHOLD

In order to study the macroscopic transport~diffusion! we
have to solve the percolation problem, i.e., to find the criti
valuec0 of a concentration of scatterers at which the infin
~spanning! cluster occurs. However, the word ‘‘cluster’’ ha
a meaning different than in the classical percolation proble
In our model two scatterers belong to the same cluster if t
are connected by a path formed by cyclotron orbits. A nei
bor of a given scatterer in the cluster can be placed at on
the 18 sites that belong to 6 orbits crossing the site occu
by the scatterer. To find the percolation thresholdc0 we per-
formed the computer simulation on the lattice ofL3L sites
and measured the probabilityp(c,L) that the spanning clus
ter occurs over the scaleL at concentration of random sca

FIG. 1. An example of two orbits~hexagons! on the triangular
lattice crossing the site occupied by a scatterer represented by
circle.
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terersc ~see Fig. 2!. We generated 104 independent scattere
configurations for givenc and L and then the probability
p(c,L) was calculated as a fraction of configurations w
the spanning clusters. Using the results obtained for the
tice sizeL5125,250,375,500, and 750, and applying Kir
patrick’s method@19#, i.e., extrapolation of the fixed point
c* (L) obtained from the equationp(c,L)5c, and extrapo-
lation of points c̃(L) defined by the conditionp(c,L)5 1

2 ,
we found c050.215560.0005. This value is much lowe
than the threshold value for the classical site percolat
problem on the triangular lattice (c05 1

2 ) @20#, where the
random walk over the occupied nearest neighbor sites is c
sidered. Therefore, it is interesting to check whether
model belongs to the universality class of the tw
dimensional lattice percolation@21#. To answer this question
we calculate the critical exponentdw of the mean-square
displacementR2(t);t2/dw at the percolation threshold an
above it.

IV. DIRECT CALCULATION OF THE VELOCITY
AUTOCORRELATION FUNCTION

Similar to an earlier work on the percolation proble
@18#, we simulated directly the velocity autocorrelation fun
tion ~VAF! Fx(t)5^vx(0)vx(t)& using a very accurate mo
ment propagation technique~for details see Ref.@16#!. It is
worth noting that statistical errors remain two orders of ma
nitude lower than the VAF even for 103 mean-free time
steps. On the other hand, due to large statistical errors,
practically impossible to calculate VAF for even 100 mea
free time steps by the Monte Carlo method, which is still
use for stochastic Lorentz gases@22#.

In order to study the long-time behavior of VAF and th
mean-square displacement, we consider a diffusion only
the spanning cluster. First, we have to find the spanning c
ter on the triangular lattice withL3L sites for a given con-
figuration of scatterers. As the initial distributionP(n,r ,0)
we have to use the steady-state solution of the distribu

ed

FIG. 2. The probability that a spanning cluster occurs at
concentration of scatterersc on the lattice ofL3L sites for L
5125,250,500, and 750. The symbols represent Monte Carlo s
lation data. The dashed line,f (c)5c, is used to find the fixed
points.
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3866 PRE 59CZESŁAW OLEKSY
function P(n,r ,t). It has a constant~nonzero! value only for
the sites and velocity directions determined by all cyclotr
orbits of the spanning cluster. In the moment propagat
method, however, we calculate another functionW(n,r ,t)
with the same evolution rules as forP(n,r ,t)

W~n,r ,t11!5H W~n21,r2en21 ,t !, for u r50

1

6(l 50

5

W~ l ,r2el ,t !, for u r51,

~2!

with the initial conditions

W~n,r ,0!5P~n,r ,0!enx .

Hereu r51 or 0, depending on whether the siter is or is not
occupied by a scatterer. Then, VAF can be calculated fr
the formula

Fx~ t !5K (
r ,n

W~n,r ,t !enxL , ~3!

where averaging is over the different spanning clusters.
worth noting that the moment propagation technique is ex
for the single cluster because all particle trajectories are
counted for. The statistical errors occur due to averag
over different clusters~100 in our simulation!. The result
obtained for the lattice withL5500 and fort<104 shows
that VAF has a long-time tail~see Fig. 3! given by the alge-
braic formulaFx(t);t2b with b51.30560.01 at the perco-
lation threshold andb52 above the threshold. We observe
also a short period oscillation superimposed on the deca
VAF that plays an important role for several hundred tim
steps. They are generated by the motion of the particle
cyclotron orbits.

FIG. 3. A log-log plot of the absolute value of the veloci
autocorrelation function as a function of timet at the percolation
threshold. The simulation data points are denoted by circles.
estimated statistical errors are shown as crosses~lower curve!. Di-
mensionless units.
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A. Change of the sign of VAF

An interesting problem encountered in the simulation d
is the sign change of the correlation with the increase of
scatterers concentration. At the percolation threshold and
above it, VAF has a negative value at long times, similar
VAF for the random walk problem on percolation cluste
@18,23#. The same sign of the correlation was observed
VAF in ballistic lattice Lorentz gases@17#. However, VAF in
our model becomes a positively defined function at interm
diate concentrations of scatterers~i.e., for c.0.52). The
positive correlation was observed in a cellular automata
tice gas and explained by the mode-coupling theory@14#.

In order to understand change of the sign of VAF w
increasing concentration of scatterers, we study the simp
case where all but one lattice sites are occupied by scatte
Thus, only one site is unoccupied and it will be called a h
in the sea of scatterers. It is interesting to discuss this c
for several reasons.

~i! VAF in this model can be calculated without nume
cal errors because there is only one configuration of sca
ers.

~ii ! Nonzero correlations are generated only by the ho
This is implied by the isotropic scattering rules.

~iii ! All nonzero contributions to VAF fort>1 start from
six initial positions of the particle only.

~iv! The magnetic field affects the particle trajectori
only inside the hole.

Owing to ~iv! we can also easily calculate VAF for the sy
tem without a magnetic field (B50), in which a particle
goes through the hole along a straight line. Property~iii !
comes from the fact that the initial distributionP(n,r ,0)
51/(6N), for all r and n, whereN means a number of the
lattice sites (N5L2). Moreover, for a scatterer located at si
r there exists a pair of trajectories beginning at sites$r
2en ,r1en% with opposite initial velocities$en ,2en%. These
trajectories meet at siter after first time step and their con
tribution to VAF cancel each other fort.1. Thus, only tra-
jectories starting from the nearest neighbors of the hole w
velocities directed towards the hole can contribute to a n
zero correlation. It is worth noting that point~ii ! implies that
the velocity autocorrelation function is determined only
the return probabilities of the particle to the hole.

Using the moment propagation technique, we calcula
VAF on the lattice withL5500 with and without magnetic
field ~see Fig. 4!. VAF is negative when a magnetic field i
switched off, which means that on average the particle
turns to the hole with the velocity opposite to its initial v
locity. On the other hand, VAF becomes positive in the pr
ence of a magnetic field. This can be roughly explained
follows. The particle starting with velocityen enters the hole
at t51, and its velocity is rotated by the angle ofp/3. Then
it enters the sea of scatterers and leaves it~on average! with
velocity rotated byp, as in the case without a magnetic fiel
Upon returning to the hole the particle velocity is rotat
again byp/3. Thus, the particle velocity is rotated on ave
age by 5p/3 with respect to the initial direction, which im
plies positive correlations. We can expect that positive c
relation occurs also for a hole in a finite ‘‘island’’ o
scatterers and for systems with many holes.

e
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Now we consider VAF at the percolation thresholdc
50.2155 where its sign is negative. The negative corre
tions are due to the so-called cage effect@24#, which can be
explained by repeated backscattering of the particle. Pos
correlations were observed in the simulations carried out
a concentrationc.0.52, i.e., above the percolation thresho
of the random walk problem. For such concentrations we
distinguish ‘‘islands’’ formed by scatterers containing hole
A mean size of an island will increase with concentratio
which implies that the effect of positive correlations d
scribed above for the single hole will become dominant
high c.

B. Logarithmic correction to the algebraic tail of VAF

In the case of the single hole in the sea of scatterers
easy to study the influence of the periodic boundary con
tions on the result~finite size effect!, because in this cas
VAF can be calculated without statistical errors. Compar
results obtained for differentL we found limiting time step
tmax for eachL such that fort,tmax VAF does not change
with an increase ofL, e.g., when a magnetic field is include
tmax5647,2630,9876 forL5125,250,500, respectively. It i
easy to see in Fig. 4 that thet22 tail of VAF is not sufficient
to fit the numerical data even for larget. Hence, there should
be another asymptotic correction to the algebraic tail. T
data obtained for both models~with and without magnetic
field! and for the linear lattice sizeL5500 are very well
fitted by the formula with a logarithmic correction to thet22

decay

F~ t !5N21t22@A01A1t21ln~ t/A2!#. ~4!

The values of the coefficientsAk presented in Table I were
obtained from fitting to data ofF(t)Nt2 for t.6000. It is
worth noting that Eq.~4! agrees qualitatively with the
kinetic-theory calculations@24# for the site-percolation

FIG. 4. A semilog plot ofF(t)Nt2 as a function of timet for the
single hole case. The extact results obtained by the moment pr
gation technique on the lattice with linear sizeL5500. Curve
a (b) corresponds to the model with~without! a magnetic field,
respectively. Dimensionless units.
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model. We are able to demonstrate the logarithmic correc
to the algebraic tail due to the absence of statistical error
calculations of VAF for the single hole case. We think th
such a correction occurs for a smaller concentration of s
terers too, but then the calculation of VAF requires aver
ing over different scatterer configurations, which produc
statistical errors. Therefore, finding the logarithmic corre
tion in a general case is more difficult in comparison with t
single hole case.

V. DIFFUSION

Using the result obtained in the simulation of VAF w
have calculated a mean-square displacement along thex di-
rection from the following formula@18#:

X2~ t !5tFFx~0!12(
s51

t21

Fx~s!G22(
s51

t21

sFx~s!. ~5!

Fitting the values ofX2(t) calculated at the percolatio
threshold,c050.2155, to the power lawX2(t);t2/dw(t), we
estimated the exponentdw52.87460.01. A value ofdw.2
indicates the anomalous diffusion, i.e., the mean-square
placement grows slower than linearly with time. This res
agrees very well with the results obtained by the exact e
meration method@25#, dw52.8660.02, and the momen
propagation method@18#, dw52.87360.012, for the random
walk problem on the percolation cluster on a square latt
This agreement can be easily explained because our mod
in some sense also a random walk model. We can desc
the diffusion ~mean-square displacement! at long times in
another way. Instead of following the motion of a particle
cyclotron orbits we can consider the motion of the center
its cyclotron orbit. When the particle moves along a sing
orbit then the center is at rest. A change of a cyclotron o
as the result of the particle collision with a scatterer cause
jump of the center of the orbit~see for example Fig. 1!. The
jumps can have different lengths. Therefore, the motion
the center of the particle’s cyclotron orbit is a kind of th
random walk with different length jumps and with differe
waiting times both depending on the local configuration
scatterers.

Above the percolation threshold, we found that the exp
nentdw52, which indicates the normal diffusion. Hence, th
diffusion coefficient above the threshold can be obtained
taking the limit

D5 lim
t→`

^X2~ t !&
2t

.

We found thatDÞ0 above the percolation threshold
reaches its maximum 0.3117260.00005 atc50.693 ~see

a-

TABLE I. CoefficientsAk (k50,1,2) in Eq.~4! obtained by
fitting the simulation data of the velocity autocorrelation function
the single hole case with or without magnetic field.

Magnetic field A0 A1 A2

B50 20.083863 0.072 19.7
BÞ0 0.010296 20.078 1.5
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3868 PRE 59CZESŁAW OLEKSY
Fig. 5!, and then decreases. The valueD5 1
4 at c51 is ob-

vious as this case corresponds to the random walk on
regular lattice.

A. The Boltzmann approximation

It is interesting to find the influence of correlated col
sions on the diffusion. In order to answer this question
construct the simplest theoretical approach, the Boltzm
approximation, which assumes a constant frequency of
lisions and neglects any correlations between collisions
the particle with scatterers. Hence, we can neglect the sp
dependence of the distribution functionP(n,r ,t). Further-
more, the probability of changing the particle velocity as t
result of scattering isc, whereas the probability of its rotatio
by a magnetic field is 12c. Thus the evolution of the six
component vector distribution functionPB(t) can be de-
scribed by the equation

PB~ t11!5@~12c!I1cT#RPB~ t !, ~6!

whereR is a rotation matrix with elementsRkl5D( l ,k11)
defined by the Kronecker delta. The scattering matrixT for
the isotropic scattering rules has all elements equal to1

6 . The
solution of Eq.~6!, PB(t) as a function ofPB(0), can be
easily obtained via diagonalization of the transfer matr
The result can be written in the form

PB~ t !5SPtS†PB~0!, ~7!

whereP is the diagonal matrix

FIG. 5. The diffusion coefficient as a function of the concent
tion of scatterers. Circles represent the results of computer sim
tions, and the dashed line shows the results obtained using the
zmann approximation. The error bars are smaller than symbol
Dimensionless units.
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Pnn53
1

~12c!z3

~12c!z2

~12c!z4

~12c!z1

~12c!z5

4 , S5
A6

6 3
1 z3 z4 z2 z5 z1

1 1 z2 z4 z4 z2

1 z3 1 1 z3 z3

1 1 z4 z2 z2 z4

1 z3 z2 z4 z1 z5

1 1 1 1 1 1

4 ,

~8!

where

zn5ei2pn/6,

andS† means the Hermitian conjugation of the matrixS.
VAF calculated in this approach becomes

Fx
B~ t !5

1

2
cosS 2pt

6 D ~12c! t. ~9!

It is the superposition of an exponential decay and the os
lation with period six, which is in disagreement with com
puter simulation data. The dependence of the diffusion co
ficient on the concentrationc is expressed by the formula

DB~c!5
c~22c!

4~c22c11!
. ~10!

It has the maximum equal toA3/6 atc5A321. Hence the
Boltzmann approximation reduces the maximum and mo
its position to a higher concentration, and of course it give
wrong result below the percolation threshold~see Fig. 5!.
Note that atc50.4056 the Boltzmann approximation pre
dicts the correct value of the diffusion coefficient, where
gives wrong values of VAF. This is due to the fact that t
VAF amplitude sign changes from negative to positive
intermediate concentration. It is known that the deviation
the computer simulation data of the diffusion coefficie
from the Boltzmann prediction is negative for negative VA
@15# and positive for the positive velocity correlation, e.g.,
fluids. Positive deviations were observed also in a determ
istic lattice Lorentz gas model@26#.

In our model the diffusion coefficient is proportional t
the conductivity, thus the conductivity vanishes below t
percolation threshold. It is an interesting problem to det
mine the influence of a small electric field on the transp
properties near the percolation threshold.

VI. DISCUSSION

The results of our simulations show that our simple latt
model has all the essential features of the continuous
@12#, e.g., it is the percolation model where the Boltzma
approximation fails. Therefore, it would be interesting
check, in the continuous model, our predictions concern
algebraic long-time tails of the autocorrelation functions
change of sign of correlations and nonmonotonic depende
of the diffusion coefficient on the concentration of scattere
On the other hand, the result presented here can be us
test numerically a theoretical approach more sophistica
than the one presented here~the Boltzmann approximation!.
Several different kinetic approximations accounting for c

-
la-
lt-
e.
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PRE 59 3869ANOMALOUS DIFFUSION OF CHARGED PARTICLES IN . . .
related collisions were discussed by van Velzen@27#. He
calculated the diffusion coefficient for a stochastic latt
Lorentz gas on the square lattice using the ring approxi
tion, the repeated ring approximation, the self-consistent
approximation, the self-consistent repeated ring approxi
tion, and the effective medium approximation. In the ring
repeated ring approximation one takes into account all ev
with single or multiple returns of the particle to the sam
scatterer. In the effective medium approximation van Velz
replaced the scattering operator by the effective operator
accounts in a self-consistent way for all repeated ring co
sions. Comparison of the diffusion coefficent calculated
different kinetic approximations with the results of compu
simulations revealed that only the results obtained in the
fective medium approximation agreed with simulation d
in the entire interval of scatterers densities. The other
proximations break down at low or intermediate densities
scatterers. In the models studied by van Velzen@27# the par-
ticle moves along a straight line between successive c
sions, therefore his theoretical results cannot be directly
plied to our model. It would be interesting to check whi
kinetic approximations proposed by van Velzen for a s
chastic lattice Lorentz gas could correctly describe the pr
erties of the present model, e.g., the percolation thresh
and the change of sign of the autocorrelation function.
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The model introduced in this paper can be easily exten
to different stochastic scattering rules as well as for differ
lattices. Moreover, it seems that a choice of the determini
scattering rules~some mirrors can play the role of scattere!
would lead to an interesting percolation model, because
the Lorentz lattice gas with strictly deterministic scatteri
rules, four classes of diffusive behavior of particles we
observed@28#, e.g., abnormal diffusion where the distribu
tion function is non-Gaussian, and the mean-square displ
mentR2(t);t12a, with 0,a,1.

In this paper we studied the model without the elect
field in order to answer some questions concerning the
colation problem. However, it is possible to generalize
discrete model to discuss the role of magnetic and elec
fields in magnetotransport, especially the influence of
electric field on the conductivity near the percolation thre
old. Switching on an electric field allows one to study ma
netotransport in a regular array of scatterers.

Fabrication of antidot arrays reached such a level t
now it is possible to prepare complicated patterns, e.g., P
rose lattice@4# or short range disordered arrays@8,9#. To our
knowledge there has not yet been performed a magnetotr
port experiment in a completely random antidot array.
would be interesting to prepare such arrays and investig
the percolation problem experimentally.
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