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Anomalous diffusion of charged particles in a lattice Lorentz gas in a transverse magnetic field

Czestaw Oleksy
Instytut Fizyki Teoretycznej, Uniwersytet Wroctawski, Pl. Maksa Borna 9, 50-204 Wroctaw, Poland
(Received 9 September 1998

We study diffusion in the Lorentz gas of noninteracting charged particles on a triangular lattice in a
transverse magnetic field. The percolation threshold appears at the scatterers concextra@i@i55. The
diffusion atc, is anomalous with the same exponet=2.874 as the one found for the universality class of
the standard two-dimensional lattice percolation. The presence of logarithmic correctiond 18 tigebraic
tail of the velocity autocorrelation function is demonstrated in a special case for concentration of scatterers
close to 1, by making use of the moment propagation technique. The results of our computer simulations show
that the diffusion coefficient has a maximum abaye and the velocity autocorrelation function changes the
sign of its amplitude, from negative to positive, at intermediate scatterers concentration. We employ the
Boltzmann approximation and calculate the diffusion coefficient and the velocity autocorrelation function.
[S1063-651%99)04403-1

PACS numbgs): 05.40—a, 64.60.Ak 66.10.Cb

[. INTRODUCTION theory[14—17. The important result of these investigations
was discovering the algebraic long-time tails of the velocity
Magnetotransport experiments in two-dimensional antidowtocorrelation function of a tagged particle. This function
arrays[1-5] revealed a characteristic magnetoresistivity os-decays with the exponedt2 for the fluid andd/2+ 1 for the
cillation at low magnetic fields. In such systems antidot holed-orentz gas, wherd is a space dimensionality. Investigation
form a superlattice with a period of a few hundred nanom-0f the long-time correlations by a computer simulation was
eters in a two-dimensional electron gas. Hence, the electropossible due to the application of the very accurate moment
motion in antidot arrays can be described using classical dyPropagation method proposed by van der Hoef and Frenkel
namics, which is confrmed by numerical calculations 16l This technique was also applied to calculate the alge-
[2,6,7]. Experiments performed on disordered antidot array?ra'c decay of the velocn_y autocorrelation in the problem of
[8—10] showed that the peaks in magnetoresistivity vanish il andom_ walk on percolation CIUStE?[r‘BS]' .
the presence of a short range disorder, i.e., antidots are ran- In this paper we propose a lattice version of the Lorentz

domly distorted from their superlattice positions. This effectd2> N the transverse magnetic field and use it to study dif-

W nfirmed b mouter simulation of the classi rusion at and above the percolation threshold. In Sec. Il we
m?)?je(I:Fll] ed by a computer simulation ot the classiCayafine a discrete model. The calculation of the percolation

. - threshold is presented in Sec. lll. The important quantity in
Bobylev et al. [12] discussed the problems arising when y,q transport problem is the velocity autocorrelation func-

one attempts to employ the kinetic theory to investigate tWOtion, whose long-time tails and amplitude sign change are
dimensional magnetotransport in a system with completelyydied in Sec. IV by making use of the moment propagation
disordered stationary scatterers, i.e., in Lorentz gas. Thelechnique. In Sec. V we apply the Boltzmann approximation
model consists of noninteracting charged particles movingo calculate the diffusion coefficient and the role of corre-
under the influence of the transverse magnetic f8idn the  lated collisions is discussed.

(x,y) plane with randomly distributed hard disks playing the

role of stationary scatterers. It has been shown that in this Il. THE DISCRETE MODEL

model the Boltzmann equation is not valid even at low den- , ) , i
sities of scatterers. In the absence of an electric field the V& consider the Lorentz gas on a triangular lattice with a
continuum percolation problem arises. This means that eledlaction of sitesc occupied randomly by stationary scatterers.
trons moving on cyclotron orbits with a radius smaller than | "€ noninteracting charged particles travel over one lattice
the critical radius are trapped in the finite clusters of scattercOnStant per unit time step in the direction of their velocities.
ers. Thus there is no diffusion below the percolation thresh]N€ particles have the same speed and their velocity direc-
old [12]. An unexpected result was obtained for a small in-tions are restricted to the following lattice vectors:
plane electric field and perpendicular magnetic figl@].
The electron drifting in the empty space can be trapped by a en=(cos< 22) —sin( 22)) n=0,1,...,5. (1)
single scatterer with a short range repulsive interaction. 6 ) 6 /) B

It is very difficult to obtain highly accurate results in com-
puter simulations performed in the continuum phase spach IS convenient to set the speed of particles as well as the
especially if one examines the long-time tails of the velocitylattice constant both equal to 1. The presence of the magnetic
autocorrelation function, anomalous diffusion in continuumfield Bz perpendicular to the particle velocities forces
percolation, etc. In recent years, lattice-gas models have be@harged particles to move along closed orbits. In our discrete
applied to atomic fluids for testing concepts of the kineticmodel the cyclotron orbit is formed by vertices of the hexa-

1063-651X/99/504)/38646)/$15.00 PRE 59 3864 ©1999 The American Physical Society



PRE 59 ANOMALOUS DIFFUSION OF CHARGED PARTICLES IN ... 3865

1.0
- B =750
0.8 — A L=500 |
@® L-250
I ® L-i25
0.6 — —
O
e: -
a
0.4 — —
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magnetic field rotates particles by clockwise in each c

unit time step. When a particle enters a site occupied by a h bability th . | h
scatterer, its velocity direction changes according to stochas- 7'C: 2. The probability that a spanning cluster occurs at the

i i i i i i f scatterers on the lattice ofL XL sites for L
ic rules. Here w me isotropi ring rules. i.e. oncentration o -
fic rules. Here we assume Isotropic scattering rules, 1., posi 125,250,500, and 750. The symbols represent Monte Carlo simu-

collisional velocity directions have equal probabiliti€9 (It |ation data. The dashed lind(c)=c, is used to find the fixed
is worth noting that the scattered particle changes its cyclopoints.

tron orbit (see Fig. L We assume that the cyclotron orbit of

a particle should be uniquely determined by its position anderersc (see Fig. 2 We generated T0ndependent scatterer
velocity. The other possible orbit consistent with this as-configurations for giverc and L and then the probability
sumption is formed by vertices of a triangle with the sidep(c,L) was calculated as a fraction of configurations with
equal to the lattice constant for which the rotation angle ishe spanning clusters. Using the results obtained for the lat-
2m/3. The latter case will not be discussed in this papertice sizel =125,250,375,500, and 750, and applying Kirk-
Thus, the concentration of scatterers becomes a parametergatrick’s method 19], i.e., extrapolation of the fixed points
this model and the magnetic field is considered to be conc* (L) obtained from the equatiop(c,L)=c, and extrapo-
stant.

Since our model belongs to the class of probabilistic cel
lular automata, it is well suited for a computer simulation. It
is convenient to define the distribution function
P(n,r,t)—the probability that a particle being at tinet a
site r has a velocity directed along,. The evolution of
P(n,r,t) can be written in two steps.

lation of pointsc(L) defined by the conditiomp(c,L)=1%,

‘we found cy=0.2155+0.0005. This value is much lower
than the threshold value for the classical site percolation
problem on the triangular latticec§=3) [20], where the
random walk over the occupied nearest neighbor sites is con-
sidered. Therefore, it is interesting to check whether our
model belongs to the universality class of the two-
(1) Rotation P(n+1,r,t+1)=P(n,r—e,,t), at a siter dimensional lattice percolatidr21]. To answer this question

without a scatterer. we calculate the critical exponei, of the mean-square
(2) Scattering P(n,r,t+1)=£37_,P(l,r—q,t), at a site displacementR?(t) ~t?“w at the percolation threshold and
r occupied by a scatterer. above it.

Knowing the initial value of the distribution function and
the positions of scatterers one can perform accurate computer
simulations.

IV. DIRECT CALCULATION OF THE VELOCITY
AUTOCORRELATION FUNCTION

Similar to an earlier work on the percolation problem
Ill. THE PERCOLATION THRESHOLD [;8], we simulated directly the vel(?city autocorrelation func-
tion (VAF) @,(t)=(v,(0)v,(t)) using a very accurate mo-

In order to study the macroscopic transp@iffusion) we  ment propagation techniquéor details see Ref.16)). It is
have to solve the percolation problem, i.e., to find the criticalworth noting that statistical errors remain two orders of mag-
valuec, of a concentration of scatterers at which the infinitenitude lower than the VAF even for $0mean-free time
(spanning cluster occurs. However, the word “cluster” has steps. On the other hand, due to large statistical errors, it is
a meaning different than in the classical percolation problempractically impossible to calculate VAF for even 100 mean-
In our model two scatterers belong to the same cluster if thejree time steps by the Monte Carlo method, which is still in
are connected by a path formed by cyclotron orbits. A neighuse for stochastic Lorentz gageX?].
bor of a given scatterer in the cluster can be placed at one of In order to study the long-time behavior of VAF and the
the 18 sites that belong to 6 orbits crossing the site occupiethean-square displacement, we consider a diffusion only on
by the scatterer. To find the percolation threshmjdve per-  the spanning cluster. First, we have to find the spanning clus-
formed the computer simulation on the latticelok L sites  ter on the triangular lattice with X L sites for a given con-
and measured the probabilip(c,L) that the spanning clus- figuration of scatterers. As the initial distributid®(n,r,0)
ter occurs over the scale at concentration of random scat- we have to use the steady-state solution of the distribution
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1002 A. Change of the sign of VAF

An interesting problem encountered in the simulation data
is the sign change of the correlation with the increase of the
scatterers concentration. At the percolation threshold and just
above it, VAF has a negative value at long times, similar to
VAF for the random walk problem on percolation clusters
[18,23. The same sign of the correlation was observed for
VAF in ballistic lattice Lorentz gasg4.7]. However, VAF in
our model becomes a positively defined function at interme-
diate concentrations of scatterefise., for c>0.52). The
positive correlation was observed in a cellular automata lat-
tice gas and explained by the mode-coupling thdd#j.

107 In order to understand change of the sign of VAF with
o increasing concentration of scatterers, we study the simplest
1077 case where all but one lattice sites are occupied by scatterers.

Thus, only one site is unoccupied and it will be called a hole
3 4 in the sea of scatterers. It is interesting to discuss this case
i for several reasons.

FIG. 3. A log-log plot of the absolute value of the velocity | (i) VAFbm this m(r)]del can ble calculatefq W'th_OUt nfumerl-
autocorrelation function as a function of tinkeat the percolation cal errors because there Is only one configuration of scatter-
threshold. The simulation data points are denoted by circles. ThE'S-

estimated statistical errors are shown as croéseger curve. Di- (i) Nonzero correlations are generated only by the hole.
mensionless units. This is implied by the isotropic scattering rules.

(iii) All nonzero contributions to VAF fot=1 start from
six initial positions of the particle only.

function P(n,r,t). It has a constarnonzerg value only for X L . . .
( ) " 9 y (iv) The magnetic field affects the particle trajectories

the sites and velocity directions determined by all cyclotron v inside the hol
orbits of the spanning cluster. In the moment propagatiorP" inside the hole.

method, however, we calculate another functiin,r,t)  Owing to (iv) we can also easily calculate VAF for the sys-
with the same evolution rules as f&(n,r,t) tem without a magnetic field§=0), in which a particle
goes through the hole along a straight line. Propéiity
comes from the fact that the initial distributio”(n,r,0)
12 =1/(6N), for all r andn, whereN means a number of the
gleo W(l,r—e,t), for 6,=1, lattice sites N=L2). Moreover, for a scatterer located at site
@) r there exists a pair of trajectories beginning at sifes
—e,,r +e,} with opposite initial velocitiege,,—e,}. These
with the initial conditions trajectories meet at site after first time step and their con-
tribution to VAF cancel each other fae>1. Thus, only tra-
W(n,r,0)=P(n,r,0)e,. jectories starting from the nearest neighbors of the hole with
velocities directed towards the hole can contribute to a non-
Here#,=1 or 0, depending on whether the sités or is not  zero correlation. It is worth noting that poitit) implies that
occupied by a scatterer. Then, VAF can be calculated fronthe velocity autocorrelation function is determined only by
the formula the return probabilities of the particle to the hole.
Using the moment propagation technique, we calculated
3) VAF on the lattice withL =500 with and without magnetic
field (see Fig. 4 VAF is negative when a magnetic field is
switched off, which means that on average the patrticle re-
where averaging is over the different spanning clusters. It isurns to the hole with the velocity opposite to its initial ve-
worth noting that the moment propagation technique is exadocity. On the other hand, VAF becomes positive in the pres-
for the single cluster because all particle trajectories are aence of a magnetic field. This can be roughly explained as
counted for. The statistical errors occur due to averagindollows. The particle starting with velocitg, enters the hole
over different cluster§100 in our simulation The result att=1, and its velocity is rotated by the angle ®f3. Then
obtained for the lattice with.=500 and fort<10* shows it enters the sea of scatterers and leavésritaveraggwith
that VAF has a long-time tailsee Fig. 3 given by the alge- velocity rotated by, as in the case without a magnetic field.
braic formulad,(t) ~t~° with b=1.305+0.01 at the perco- Upon returning to the hole the particle velocity is rotated
lation threshold andb=2 above the threshold. We observed again by/3. Thus, the particle velocity is rotated on aver-
also a short period oscillation superimposed on the decay aige by 57/3 with respect to the initial direction, which im-
VAF that plays an important role for several hundred timeplies positive correlations. We can expect that positive cor-
steps. They are generated by the motion of the particle orelation occurs also for a hole in a finite “island” of
cyclotron orbits. scatterers and for systems with many holes.

W(n—-1r—e,_q1,t), for 6,=0
W(n,r,t+1)=

<bx<t>=<2 W<n,r,t>enx>,



PRE 59 ANOMALOUS DIFFUSION OF CHARGED PARTICLES IN ... 3867

0.02 T T T LI T L TABLE | CoeﬁicientSAk (k=0,1,2) in Eq(4) Obtained by
i fitting the simulation data of the velocity autocorrelation function in
/’- the single hole case with or without magnetic field.
0.00 a -
- - Magnetic field A A A,
-0.02 7 B B=0 —0.083863 0.072 19.7
1 1 B+#0 0.010296 —0.078 1.5
NE -0.04 -
<
] ] model. We are able to demonstrate the logarithmic correction
-0.06 — to the algebraic tail due to the absence of statistical errors in
i i calculations of VAF for the single hole case. We think that
b such a correction occurs for a smaller concentration of scat-
-0.08 lo— | terers too, but then the calculation of VAF requires averag-
] ] ing over different scatterer configurations, which produces
0.10 N — §tati§tical errors. Therefore, findi_ng the Iogarithmic correc-
10" 102 10 10* tion in a general case is more difficult in comparison with the
t single hole case.
FIG. 4. A semilog plot ofb (t)Nt? as a function of timé for the V. DIFFUSION
single hole case. The extact results obtained by the moment propa-
gation technique on the lattice with linear size=500. Curve Using the result obtained in the simulation of VAF we
a (b) corresponds to the model wittwithout) a magnetic field, have calculated a mean-square displacement along the
respectively. Dimensionless units. rection from the following formuld18]:

Now we consider VAF at the percolation threshaid t1 -1

=0.2155 where its sign is negative. The negative correla- X2(t) =t ‘Dx(0)+2521 Dy(s) _2521 sby(s). (5
tions are due to the so-called cage effigxt]|, which can be

explained by repeated backscattering of the particle. Positiveitting the values ofX?(t) calculated at the percolation
correlations were observed in the simulations carried out fofhreshold,c,=0.2155, to the power lau2(t) ~t2w®  we

a concentratiow>0.52, i.e., above the percolation threshold estimated the exponent,=2.874+0.01. A value ofd,,>2

of the random walk problem. For such concentrations we caghdicates the anomalous diffusion, i.e., the mean-square dis-
distinguish “islands” formed by scatterers containing holes.pjacement grows slower than linearly with time. This result
A mean size of an island will increase with concentration,agrees very well with the results obtained by the exact enu-
which implies that the effect of positive correlations de- meration method25], d,,=2.86+0.02, and the moment
scribed above for the single hole will become dominant alyrgpagation methofiL8], d,,= 2.873+0.012, for the random

high c. walk problem on the percolation cluster on a square lattice.
This agreement can be easily explained because our model is
B. Logarithmic correction to the algebraic tail of VAF in some sense also a random walk model. We can describe

In the case of the single hole in the sea of scatterers it i@e t(rj]|ffu5|0n (lmetan-(;;q??rﬁ dl_splzi(r:]embr?t Ionfg “met? Im
easy to study the influence of the periodic boundary congi&nother way. instead otfollowing the motion of a particie on
tions on the resultfinite size effect because in this case cyclotron orbits we can consider the motion of the center of

VAF can be calculated without statistical errors. Comparingjts _cyclotron orbit. W_hen the particle moves along a singlg
results obtained for differerit we found limiting time step orbit then the center is at rest. A change of a cyclotron orbit
t,.., for eachL such that fort<t,,, VAF does not change as the result of the particle collision with a scatterer causes a
V\r;;taﬁ an increase of, e.g., when rQfar);]agnetic field is included JYMP of the center of the orb{see for example Fig.)1 The

t  —647.2630 987'6 foE:125 250,500, respectively. It is jumps can have different lengths. Therefore, the motion of
e”AZXy to sée in F,ig. 4 that the? tl’;\il of, VAI,: is not sufficient the center of the P*’?‘”‘C'e's cyclotrpn orbit is a_kinq of the
to fit the numerical data even for largeHence, there should random walk with different length jumps and with different

be another asymptotic correction to the algebraic tail. Th¢=,\""r’“tIng times both depending on the local configuration of

. . : . tterers.
data obtained for both model(svith and without magnetic sca .
field) and for the linear lattice siz& =500 are veryg well Above the percolation threshold, we found that the expo-

. . - . . _ nentd,,= 2, which indicates the normal diffusion. Hence, the
gtetigyby the formula with a logarithmic correction to the? diffusion coefficient above the threshold can be obtained by

taking the limit
O(t)=N"1""As+ At tn(t/A,)]. (4)

(X3(1))

D=tI|m ot

The values of the coefficients, presented in Table | were oo
obtained from fitting to data of® (t)Nt? for t>6000. It is
worth noting that Eq.(4) agrees qualitatively with the We found thatD+#0 above the percolation threshold,

kinetic-theory calculations[24] for the site-percolation reaches its maximum 0.311F®.00005 atc=0.693 (see
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0.4 1] (1 73 74 7, Zs z4]
) | (1-c)z5 1 1 z, z4 24 2
(1-¢)z, Vell zz 1 1 z3 z3
Man= (1-C)z4 |’ S= 6|1 1 z4 2, 2, 7|
(1-c)z; 1 23 2, 24 27 Zg
| (1-c)z5 11 1 1 1 1
o 8
where
z,= ei2wn/6’
andS" means the Hermitian conjugation of the mat8ix
VAF calculated in this approach becomes
B 1 27t .
d)x(t)zzcos(T (1—c)- (9

It is the superposition of an exponential decay and the oscil-
FIG. 5. The diffusion coefficient as a function of the concentra—Iatlorl V.Vlth pFT‘HOd six, which is in dlsagreemem. Wlt.h com-
tion of scatterers. Circles represent the results of computer simulzﬁuf[er simulation data. The dgpendence of the diffusion coef-

tions, and the dashed line shows the results obtained using the Bo cient on the concentrationis expressed by the formula
zmann approximation. The error bars are smaller than symbol size.
Dimensionless units. c(2—c)

B = —— -
DHe) 4(c?—c+1)

(10
Fig. 5, and then decreases. The valDe=; atc=1 is ob-
vious as this case corresponds to the random walk on th%
regular lattice.

has the maximum equal t¢3/6 atc=3— 1. Hence the
oltzmann approximation reduces the maximum and moves
its position to a higher concentration, and of course it gives a
wrong result below the percolation threshdkke Fig. 5.
Note that atc=0.4056 the Boltzmann approximation pre-
o ) _ ) _ dicts the correct value of the diffusion coefficient, whereas
_ It is interesting to find the influence of co_rrelated_colh- gives wrong values of VAF. This is due to the fact that the
sions on the d|ffu3|on. In orde.r to answer this question wey/af amplitude sign changes from negative to positive at
construct the simplest theoretical approach, the Boltzmanihtermediate concentration. It is known that the deviation of
approximation, which assumes a constant frequency of colhe computer simulation data of the diffusion coefficient
lisions and n_eglects any correlations between collisions (_)from the Boltzmann prediction is negative for negative VAF
the particle with scatterers. Hence, we can neglect the spatif{ 5] and positive for the positive velocity correlation, e.g., in
dependence of the distribution functid®(n,r,t). Further-  figs. Positive deviations were observed also in a determin-
more, the probability of changing the particle velocity as thejgtic |attice Lorentz gas mod¢pe).
result of scattering is, whereas the probability of its rotation In our model the diffusion coefficient is proportional to
by a magnetic field is  c. Thus the evolution of the six- the conductivity, thus the conductivity vanishes below the
component vector distribution functioR®(t) can be de- percolation threshold. It is an interesting problem to deter-
scribed by the equation mine the influence of a small electric field on the transport

PB(t+1)=[(1—c)l +cT]RPE(1), ©) properties near the percolation threshold.

A. The Boltzmann approximation

VI. DISCUSSION

whereR is a rotation matrix with element,;=A(l,k+1) The results of our simulations show that our simple lattice
defined by the Kronecker delta. The scattering mafrifor ~ model has all the essential features of the continuous one
the isotropic scattering rules has all elements equgl he  [12], e.g., it is the percolation model where the Boltzmann
solution of Eq.(6), P5(t) as a function ofP®(0), can be approximation fails. Therefore, it would be interesting to
easily obtained via diagonalization of the transfer matrix.check, in the continuous model, our predictions concerning
The result can be written in the form algebraic long-time tails of the autocorrelation functions, a
change of sign of correlations and nonmonotonic dependence
of the diffusion coefficient on the concentration of scatterers.
PB(t)=SII'S'P8(0), (7)  On the other hand, the result presented here can be used to
test numerically a theoretical approach more sophisticated
than the one presented hdtke Boltzmann approximation
wherell is the diagonal matrix Several different kinetic approximations accounting for cor-
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related collisions were discussed by van Vel@d]. He The model introduced in this paper can be easily extended
calculated the diffusion coefficient for a stochastic latticeto different stochastic scattering rules as well as for different
Lorentz gas on the square lattice using the ring approximalattices. Moreover, it seems that a choice of the deterministic
tion, the repeated ring approximation, the self-consistent ringcattering rulegssome mirrors can play the role of scattejers
approximation, the self-consistent repeated ring approximawould lead to an interesting percolation model, because in
tion, and the effective medium approximation. In the ring orthe Lorentz lattice gas with strictly deterministic scattering
repeated ring approximation one takes into account all eventsiles, four classes of diffusive behavior of particles were
with single or multiple returns of the particle to the sameobserved 28], e.g., abnormal diffusion where the distribu-
scatterer. In the effective medium approximation van Velzertion function is non-Gaussian, and the mean-square displace-
replaced the scattering operator by the effective operator thahentR?(t) ~t1~ ¢, with 0<a<1.

accounts in a self-consistent way for all repeated ring colli- In this paper we studied the model without the electric
sions. Comparison of the diffusion coefficent calculated infield in order to answer some questions concerning the per-
different kinetic approximations with the results of computercolation problem. However, it is possible to generalize the
simulations revealed that only the results obtained in the efdiscrete model to discuss the role of magnetic and electric
fective medium approximation agreed with simulation datafields in magnetotransport, especially the influence of an
in the entire interval of scatterers densities. The other apelectric field on the conductivity near the percolation thresh-
proximations break down at low or intermediate densities obld. Switching on an electric field allows one to study mag-
scatterers. In the models studied by van Velg2r the par-  netotransport in a regular array of scatterers.

ticle moves along a straight line between successive colli- Fabrication of antidot arrays reached such a level that
sions, therefore his theoretical results cannot be directly apaow it is possible to prepare complicated patterns, e.g., Pen-
plied to our model. It would be interesting to check which rose lattic[4] or short range disordered arrgdy&9]. To our
kinetic approximations proposed by van Velzen for a stoknowledge there has not yet been performed a magnetotrans-
chastic lattice Lorentz gas could correctly describe the propport experiment in a completely random antidot array. It
erties of the present model, e.g., the percolation thresholdiould be interesting to prepare such arrays and investigate
and the change of sign of the autocorrelation function. the percolation problem experimentally.
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